Linear Minimax Regret Estimation of Deterministic Parameters with Bounded Data Uncertainties

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax Estimation of Linear Combinations of Restricted Location Parameters

Discussion Papers are a series of manuscripts in their draft form. They are not intended for circulation or distribution except as indicated by the author. For that reason Discussion Papers may not be reproduced or distributed without the written consent of the author. The estimation of a linear combination of several restricted location parameters is addressed from a decision-theoretic point o...

متن کامل

Estimation of Bounded Model Uncertainties

We identify parameters of a given input-output model so that estimated model output is consistent with the measured output of the system modeled. Parameter estimation based on a set-membership approach is a nonprobabilistic method for characterizing the uncertainty with which each model parameter is known. The model is consistent with data if the estimated output domain contains measured system...

متن کامل

Minimax Estimation of a Bounded Discrete Parameter

For a vast class of discrete model families with cdf’s Fθ, and for estimating θ under squared error loss under a constraint of the type θ ∈ [0,m], we present a general and unified development concerning the minimaxity of a boundary supported prior Bayes estimator. While the sufficient conditions obtained are of the expected form m ≤ m(F ), the approach presented leads, in many instances, to bot...

متن کامل

Minimax Estimation of a Bounded Squared Mean

Consider a normal model with unknown mean bounded by a known constant. This paper deals with minimax estimation of the squared mean. We establish an expression for the asymptotic minimax risk. This result is applied in nonparametric estimation of quadratic functionals.

متن کامل

Robust Logistic Regression with Bounded Data Uncertainties

Building on previous work in robust optimization, we present a formulation of robust logistic regression under bounded data uncertainties. The robust estimates are obtained using block coordinate gradient descent with iterative group thresholding, which zeros out highly uncertain variables. For high dimensional problems with uncertain measurements, we discuss the addition of regularization pena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2004

ISSN: 1053-587X

DOI: 10.1109/tsp.2004.831144